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A non-linear analysis is presented for the stability of a liquid film adjacent to a 
compressible gas and under the influence of a body force directed either outward 
from or toward the liquid. The effects of the liquid's surface tension are taken 
into account. The non-linear Rayleigh-Taylor instability is included as a special 
case. The analysis considers the case of an inviscid liquid adjacent to a subsonic 
flow and the case of a very viscous liquid adjacent to a subsonic or a supersonic 
flow. For a subsonic external flow, it is found that the cut-off wave-number is 
amplitude dependent in the inviscid case whereas it is amplitude independent 
in the viscous case. It is found that the non-linear motion of the gas may be 
stabilizing or destabilizing, whereas the non-linear motion of the liquid is found to 
be stabilizing in the viscous case. For a supersonic external flow and a viscous 
liquid, the cut-off wave-number is amplitude dependent. Moreover, unstable 
disturbances with wave-numbers near the cut-off wave-number do not grow 
indefinitely with time but achieve a steady-state amplitude. 

1. Introduction 
The instability of the interface of two superimposed fluids with different 

densities has been studied extensively. In the absence of convective instabilities, 
there are three principal instability mechanisms, namely, (a)  gravity (Rayleigh 
1883; Taylor 1950), ( b )  pressure perturbation or Kelvin-Helmholtz instability 
(Chandrasekhar 1961; Chang & Russell 1965), and ( c )  shear perturbation (Craik 
1966; Benjamin 1959; Miles 1962). In  this paper we are concerned only with the 
first two. 

In  the absence of an external gas, the instability is provided by body forces 
acting outward from the liquid layer. In  this case, the effect of surface tension is 
to stabilize the motion for wave-numbers greater than a cut-off wave-number k,, 
while the effects of viscosity and finite depth are to reduce the amplification 
rate of unstable modes and cannot, by themselves, stabilize these modes. The 
effect of non-linearity was shown by Nayfeh (1969) to be destabilizing because 
both the amplification rate and the cut-off wave-number increase as the dis- 
turbance amplitude increases. 

The addition of an external gas allows perturbations in the stresses exerted 
by the gas on the interface due to the appearance of waves. The essence of the 
Kelvin-Helmholtz mechanism is that the pressure perturbation exerted by the 
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gas does work on the interface. The amount of work done depends on the magni- 
tude and phasing of the pressure with respect to the wave. This phasing depends 
on whether the external gas is viscous or inviscid, laminar or turbulent, and 
whether it is incompressible, subsonic or supersonic. If the external gas is 
inviscid and subsonic (including incompressible), flowing parallel to the undis- 
turbed surface with a uniform mean velocity, the pressure perturbation is 180’ 
out of phase with the surface amplitude. In  this case, the gas pushes down at  the 
troughs of the wave and sucks a t  the crests of the wave, thereby feeding energy 
to the disturbance in the liquid layer. On the other hand, if the external gas 
flow is non-uniform, the pressure disturbances lag the wave by less than 180’. 
Consequently, the axial component of the pressure perturbation can do work 
on the wave (Miles 1957). A different situation arises if the external flow is 
supersonic. In  this case, the pressure perturbation is in phase with the wave 
slope, giving rise to maximum energy transfer from the gas to the liquid through 
supersonic drag. Chang & Russell (1965), and Willson & Chang (1967) found 
instability a t  all wave-numbers in the inviscid limit for supersonic flow with a 
uniform mean velocity parallel to the undisturbed surface, even in the presence 
of surface tension. However, they showed that the introduction of viscosity 
gives a cut-off wave-number above which disturbances are stable. 

The purpose of the present paper is to study the combined effect of pressure 
perturbations and body forces on the non-linear stability of finite-depth liquid 
layers, taking surface tension into account. One surface of the liquid is taken to 
be adjacent to a solid body, while the second surface is taken to be adjacent to 
a subsonic or supersonic inviscid gas stream flowing parallel to the solid surface. 
Hence, the effects of shear perturbations and non-uniform velocity profiles will 
not be considered. The liquid motion is assumed also to be two-dimensional and 
initially quiescent. Subsequent to the submittal of this paper, Drazin (1970) 
analyzed the non-linear Kelvin-Helmholtz instability of two parallel horizontal 
streams of inviscid incompressible fluids. 

2. Case of inviscid liquid and inviscid subsonic gas 
We assume that the motions of both the liquid and the gas are represented 

by potential functions, and we consider a standing or travelling sinusoidal dis- 
turbance with amplitude a and wave-number k‘. Distances and time are made 
dimensionless using l/k’ and (gk’)-*, respectively, where g is the body force 
normal to the undisturbed gaslliquid interface and directed from the liquid to 
the gas. The gas density, pg ,  is assumed to be very small compared to that of the 
liquid, p, so that the gas body force can be neglected. The transient motion of 
the gas is neglected because the gas velocity, U,, is much larger than the wave 
velocity for the casea we consider. 

A Cartesian co-ordinate system is introduced such that the x and y axes are 
in and normal to the undisturbed liquid/gas interface. The potential functions 
representing the motion of the liquid and the gas are taken to be 
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V2'p = 0, -h  < y < 7 (2.1) 

where the dimensionless functions, 'p and @ satisfy 

and (see Van Dyke 1964) 

(Dug + m2@, = M2[$(y - 1) (2@, + @: + @;) (@= + Quu) + ( 2@$ + 0;) axx 
+ 2 ( 1 + @ x ) @ u @ D , , f @ p u u l  (7 < y < m), (2.2) 

for - co < x < 00, where h is the depth of the liquid layer, ~ ( s ,  t )  is the elevation 
of the wave above the undisturbed interface, M is the gas Mach number, and 

m2 = 1-M2. 

At the solid/liquid interface, the normal velocity vanishes, i.e. 

'pu(", - h, t )  = 0. 

Since @, vanishes away from the liquid surface, 

(2.3) 

a+, 00, t )  = 0. (2.4) 

At the liquidlgas interface, the normal components of the gas and the liquid 
velocities are equal to each other and to the normal velocity of the interface 

(2 .5)  
itself, i.e. 

7 x u  -G? =-yz@x at y = q .  (2.6) 

-y-'pt+&(~:+'p;) = k 2 ~ , , ( l + ~ ~ ) - ~ - ~ m k ~ C ,  at y = h, (2.7) 

where C' is the pressure perturbation coefficient exerted by the gas on the inter- 
face due to the appearance of waves, and it is given by (Liepmann & Roshko 

7t+'Pu = Tr7z a t  Y = 7, 

Moreover, the balance of normal forces on this interface gives 

957) c, = (2/yM2) (1.1 - * (y  - 1) M2(2(Dx + G?; + @3]7,/(7-1) - l } ,  (2.8) 

with y the specific heat ratio of the gas. The parameters k and x are defined by 

k: = k'/k6, kl! = (pg/T)*, x = po u:k&y, 
where T is the surface tension and kE is the linear cut-off wave-number in the 
absence of the gas motion. 

The initial conditions are taken to be 

y(z, 0) = ECOSX, E = ak', (2.9) 

7t@,O)  = 0. (2.10) 

The problem posed by the system of equations (2.1)-(2.10) is essentially a 
non-linear oscillation problem. Therefore, in order to determine an approximate 
solution to this system for small but finite E ,  we use the method of multiple scales 
(Nayfeh 1965, 1968) by introducing the time scales 

To = t ,  Tl = E t ,  T2 = E2t .  (2.11) 

Consequently, the time derivative is transformed according to 

a a  a a 
= Ro+E-+EZ-+ ..., 

aTl aT, 
(2.12) 

14-2 
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Moreover, we assume expansions of the form 

A .  H .  Nayfeh and W .  8. Saric 

3 

(2.14) 

(2.15) 

Sincc (%I),  (2.3), and (2.4) are linear, each ylZ satisfies (2.1) and (2.3), while each 
Qn satisfies (2.4). 

Substituting the above expansions into the remaining equations and equating 
coefficients of like powers of e, we get 
Order B: 

ql(x, o,o, 0 )  = cosx, ( x ,  O , O , O )  = 0. 
W O  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Order €2:  



(62.2) 

(8Z'Z) '0 = fi 

(LZ'Z) '0 = fi 

(9Z.Z) 

EIZ 

Third-order solutions are given for travelling and standing waves in 332.1 and 
2.2, respectively. As in the non-linear Rayleigh-Taylor instability, these ex- 
pansions are not valid a t  or near the cut-off wave-numbers. An expansion valid 
near these cut-off wave-numbers is presented in 32.3. Moreover, the expansions 
of $02.1 and 2.2 have two singularities corresponding to the two-to-one and 
three-to-one resonances. A second-order expansion is presented in $ 2.4 for 
periodic travelling waves for the two-to-one resonance case. 

2.1. Expansion for travelling waves 
The solution of the first-order problem is 

rl = COSe, (2.31) 
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(2.32) 

Ql = m-1 e-mu sin 0, (2.33) 

where ,uz = n(n2k2 - nXk - l)/Cn, C;l= tanh nh, (2.34) 

0 = ~+~1270+/3(Ti,T'), P(0,O) = 0. (2.35) 

The linear solution is obtained if p is taken to be a constant. The solution shows 
that disturbances are stable or unstable, depending on whether ,a; is positive 
or negative. The cut-off wave-numbers (wave-numbers corresponding to neutrally 
stable disturbances) are given by ,u: = 0; that is, 

k2-Xk-1= 0 (2.36) 

or kc = " 2 x-  + (x2+4)&l. (2.37) 

Since the wave-numbers are positive, only the positive sign in (2.37) has a 
physical significance. Equation (2.37) shows that the cut-off wave-number is 
independent of the liquid depth as in the Rayleigh-Taylor instability. Dis- 
turbances are stable if lc > lcc and unstable if k < kc. 

If the body force is directed from the gas to the liquid, (2.37) is modified to 

kc=" 2 x-(x2--4)~l. + (2.38) 

Hence, there are two cut-off wave-numbers, and disturbances are stable only 
if their wave-numbers lie outside these two cut-off wave-numbers, otherwise, 
they are unstable. For x c 2, the flow is stable for all wavelengths which is the 
classical Kelvin-Helmholtz problem. 

With the above solution, (2.22)-(2.25) become 

(2.39) 

(2.40) 

(2.41) 

a( 1 - C;) p; + $[( 3 - C;) ,u; - 2mkx] cos 20 
8% 8% a@ -7  - - -~2-2 -  m k X L  = 
aTo ax 

+,ulCl-cos6' aP at  y = 0. (2.42) 
aT1 

In order to prevent secular terms from entering into the solution, a,8/aTl = 0, 
i.e. /? = P(T2). Hence the solution of the second-order problem is 

72 = a 2 2 (  cos 28 - cos 0,) , (2.43) 

(2.44) 
cosh 2(y+h) 

yz  = $,@(C;- l)To+ (,ulb22sin28-+,u2a22sin82) sinh2h ' 
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e, = 2 X + p , ~ , ,  (2.46) 

a 2 2  = (1133 - ct - 4c1c2) + 2 [ 1 + &(? + 1) $ ] ) / 2 c z ( p ,  - 4 p 3 ,  (2.47) 

where 

(2.48) 

(2.49) 

The first- and second-order solutions determine the right-hand sides of (2.26)- 
(2.29),  and they become 

aw3 aw,  
ax ay2 

m2 + - = (pl + qy) e-3mv sin 0 + NSPT, (2.50) 

-+- 873 a(P3 = (p,+p’)sine+NSPT, (2 .51)  
aT0 aY 

a” = p3 sin 8 + NSPT, 
ax ay (2 .52)  

- r3 - - - k 2 3 -  a2r m k p  = (p4+kxp5+,u1Cl~’)cosB+NSPT, (2.53) 
aT, 8x2 ax 

where the p’s and q are given in the appendix, NSPT stands for non-secular 
producing terms, and p’ = dp/dT,. The particular solution of the third-order 
problem contains secular terms which make r3/r1 unbounded as T,+co. To 
determine the conditions which must be satisfied for there to he no secular terms, 
we assume that the particular solution corresponding to these secular producing 
terms is 

73 = 0, (2.54) 

(2.56) 

This particular solution satisfies (2 .1 )  and (2 .50) .  Substituting this solution into 
(2.51)-(2.53), and equating the coefficients of sin 0 and cos 8 on both sides, we get 

E = P,+P’, (2 .57)  

32% 5 4 mD+- -+- - = p3, 
8 m  3 2 m 2  

(2.58) 

- mkxD = p4 + kxp, +plCIP’. (2 .59)  
8 m  

Elimination of E and D from these equations yields 

P’ = [(Cq+4C1C,- 3)a,2+3C1-2C2,C2],u1/4C1- 3k2/16Cl,ul 

+ k x  - - + - - - p3 - p,) / 2 p 1  C,. ( 2.60) (2l ;6?5 



216 A .  H .  Nayfeh and W .  S.  Saric 

Therefore, the solution to second-order is 

7 = e cos 8-t c2a22(cos 28 - cos 8,) + O(e3), (2.61) 

cosh (y + h)  
sinh h 'p = epl sin 8 

cosh 2(y + h) + €2 ( i p ; ( (~ t  - 1) t + [p, b,, cos 28 - &,uza2, sin o,] 
sinh 2h 

(2.62) 

= em-1 sin 8 e-mu 

+c2( [$(y+ 1 ) 2 y + ~ ] s i n 2 8 - ~ e - 2 m u s i n 8 2  M4 a e-2my+O(e3), (2.63) 
m 

where (2.64) 

(2.65) 

If the effects of the external gas are negligible (i.e x = 0) ,  the above solution 
reduces to that of Nayfeh (1969). If, in addition, the body force, g, is directed 
from the gas to the liquid and if the terms involving 8, are eliminated, the above 
solution reduces to those of Barakat & Houston (1968) and Nayfeh (1970a). 

For realp,, the above solution shows to second-order that an initially harmonic 
disturbance travels with two wave speeds; one is amplitude dependent and the 
other is amplitude independent as in the case of no external gas. However, the 
external gas affects the linear as well as the non-linear contribution to the wave 
speed. For imaginary p,, on the other hand, the gaslliquid interface grows without 
limit, and no travelling wave solutions are possible. An expansion for standing 
waves is presented in the next section. 

Although the above solution is valid for a wide range of wave-numbers such 
that ,ul is real, it  breaks down as p1 -+ 0 or p2 -+ 2p1. The case p1 = 0 corresponds 
to the cut-off wave-number, and in this case, p' --f 00 as p1 -+ 0. An expansion 
valid near the cut-off wave-numbers is presented in $2.3. The case pz = 2p1 
corresponds to the motion of the first and second harmonic with the same linear 
wave speed, and it is a special case of the triad resonance (Phillips 1960; Benney 
1962; McGoldrick 1965; Simmons 1969). In  this case, a22 -+ 00 as p, + 2p1. An 
expansion for periodic waves with p2 M 2p1 is presented in $2.4.  

2.2. Expansion for standing waves 

In this case, the solution of the first-order problem is 

Vl = cos a cos x, 

cosh (y + h) 
'pl = p l  sin a cos x 

sinhh ' 
Q1 = m-l cos a sin x e-u, 

where a = p,T,+w!,,T2). 
Then, (2.21)-( 2.24) become 

(2.66) 

(2.67) 

(2.68) 
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872 a(P2 af; - + - = --sin a cos x - &,alCl sin 2a  cos 2x,  
aT, ay aTl 

217 

(2.70) 

(2.71) 

= ,alel- af; cosacosx+~(1-CZ,),a~+,(3+CZ,),aZ,COS2a 
aT1 

+ {$[( CZ, + 1 )  ,a; - 2mkx] + *[ (3  - CZ,) ,a: - 2mkx-J cos 2a} cos 2x. (2.72) 

For there to be no secular terms in r2, a6/aTl = 0, or f; = f;(T2), and hence, the 
solution of the second-order problem is 

T~ = [&u,,(cos 2a - cos ,a2 To) + a2,( 1 - cos ,a2 To)] cos 2x,  (2.73) 

'p2 = - $( 1 - Cf) ,$To - &( 3 + CZ,) ,a1 sin 2a 
cosh 2(y  + h) 

sinh 2h + [&,al b,, sin 2a  - &,a2 cos ,a2 To] cos 2x > (2.74) 

1 M4 1 a2 = - - ( + 1 )  ( 1  +cos 2 a ) y + -  (d2,c0s2a-a~,c0sp,T0) 
[16 m3 2 m  

1 

m 1 + - (d2, - a2, c0s,u2T,) sin 2x e-2my, (2.75) 

where a,, = m 

1 M4 a,,= a,,+- m+- +--( +l) .  
8 '( It*) 32 m3 " 

(2.76) 

(2.77) 

Substituting the first- and second-order solutions into (2.26)-(2.29), we get 

m2-+- - - (Pl + Qy) e-3mg cos a sin x + NSPT, 
a w 3  a w 3  
ax2 ay2 

aT0 a Y  

(2.78) 

%+* = (P,+g)sinaCosx+NSPT, (2.79) 

(2.80) _ _ _ _ -  a@3 - P3 cos a sin x + NSPT, 
ax ay 

-7  a(P --3-k2---- a273 mkx- a@., = (P4+kx~+,ulCl~)cosacosx+NSPT, (2.81) aT, ax2 ax 

where the P's and Q are defined in the appendix and 6' = df;IdT,. The condition 
which must be satisfied for there to be no secular terms is 

'g = [ - P4 - ,al c1 Pz + kx (; 2 + & 2 - P3 - P5)]/2,a1Cl. (2.82) 

The surface elevation to second-order is thus given by 

7 = ECOS(,al+€2g)tCOSX+F2 

x {~u,,[eos 2(p1 + e 2 f )  t - cos,a2t] + a,,( 1 - C O S ~ , ~ ) }  cos 2x + O(e3).  (2.83) 



218 A .  H .  Nayfeh and W .  S.  Saric 

If the effects of the external gas are neglected, this solution reduces to that 
of Nayfeh (1969). For real pl (2.83) represents oscillating standing waves with 
an amplitude dependent frequency given by p1 + e2f and an amplitude inde- 
pendent frequency given by p,. If p, is imaginary, (2.83) represents growing 
waves, and it is valid for short times only, because as time increases, the second 
term dominates the first term. Although this expansion is valid for a wide range 
of wave-numbers, it is singular at  the cut-off wave-number (i.e. p1 z 0) ,  and at  
the second harmonic resonant wave-numbers (i.e p2 M 2p1) as in the travelling 
wave case. An expansion valid near the cut-off wave-numbers is presented in 
the next section. 

2.3. Expansion valid near the cut-off wave-number 

To determine an expansion valid near the cut-off wave-number, we let 

k = kc+& with v = O(1). (2.84) 

Then, (2.16)-(2.30) remain unchanged except k is replaced by kc and (2.29) is 
modified by the addition of the term ~ ( 2 k ~ : , C a ~ ~ ~ / a x ~ ]  + m ~ [ a @ ~ / a ~ ] ) .  In  this case, 
we consider the variations with respect to the time scales To and Tl only so that 
the solution of the first-order problem becomes 

71 = 7ll(rr) cos x, 

91 = 0, 

rll(0) = 1, r;l(o) = 0, 

Ql = sm-lqll sin x e-mY, 

where primes denote differentiation with respect to the arguments. 
Then, (2.21)-(2.24) become 

a w ,  a w ,  M4 
m2-+- = - $(y + 1) m2 q& sin 2x e-2my, 

%+% = -q;lcosx at y = 0, 

ax2 ay2 

aT0 aY 

ar, a@, 1 i+m2 
ax ay 2 m 

72,,sin2x at y = 0, ___- - ____ - 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

The solution of (2 . l ) ,  (2.89)-(2.92) subject to the initial conditions (2.25) is 

7, = a,,(& cos 2x - cos O,), (2.93) 

cosh2(y+h) 
- $p2a,, sin 8, (2.94) 

cosh (y + h) 
9, = - cos x 

sinh h sinh 2h ' 

(2.95) 

where a,, and d,, are evaluated at  k = kc. 
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Substituting for the first- and second-order solutions into (2.26)-(2.28) and 
the modified (2.29), we have 

a%@., a2cp3 + ~ = ( p ,  + qy) $l e-3mY sin x + NSPT, m2T2- ay2 
(2.96) 

%+% = O+NSPT at 

--!!% 8173 = p,&sinx+NSPT 

aT0 aY 

ax ay 

Y = 0, (2.97) 

a t  y = 0, (2.98) 

= [ ( ~ ~ ~ + ~ c : c X p s ) ~ ~ ~ - ~ l ~ ~ ~ + ( 2 1 c , - ~ ) a ~ l l ] c o s x + N S P T  at y = 0. (2.99) 

In  these equations, the p's and q are evaluated at k = kc. 
The particular solution of the third-order problem contains secular terms 

which make r3/ql unbounded as To 3 00. The condition which must be satisfied 
for there to be no secular terms is 

(2.1 00 a)  Gr;l+ (2rc, - x) flY1,- r17E = 0, 

where (2.100 b)  

With (2.88), ( 2 . 1 0 0 ~ )  has the integral 

where 

Different cases arise depending on the signs and magnitudes of I' and F. If 
I' > 0, since rll(0) = 1, & cannot exceed 1 iff  > 1 and cannot decrease from 
1 if F < 1; otherwise, T& will be imagnary. Thus, if F > 1, qll is bounded and 
oscillates between 1 and - 1 ,  and if l? < 1, qll is unbounded. The special case 
!? = 1 separates stable from unstable disturbances, and hence, 

and 

is the cut-off wave-number to second order. Since I? is independent of the liquid 
depth, the cut-off wave-number is independent of the liquid depth as in the case 
of no external gas. On the other hand, if I? < 0, (2.101) can be written as 

w 

7;; = - (r/2cl) (1 - 7 9  (7L-F). (2.103) 

In  this case, rfl is bounded and oscillates between 1 and if? is positive, and 
oscillates between 0 and 1 i f ?  is negative. In  all cases, the solution of (2.101) 
and (2.103) is given by Jacobian elliptic functions. 

In the absence of an external gas, x = 0, and le, = 1, and the cut-off wave- 
number (2.102) becomes 

IC = 1 + ~ 3 e S 2 + 0 ( € 3 )  (2.104) 

in agreement with that obtained by Nayfeh (1969). This increase in the cut-off 
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wave-number is due to the reduction of the surface tension force. The effect of 
the non-linear motion of the gas on the stability is represented by the term 
proportional to kcx.  As M - t  1, this term is positive while as M-tO, this term 
may be positive or negative depending on the value of x. Therefore, the non- 
linear motion of the gas may be stabilizing or destabilizing depending on the 
values of M and x in contrast with the non-linear motion of the liquid which 
does not affect the stability to second order. 

The second-order expansion for 7 which is valid in the region k - kc = O(e2) is 

P e T  k'c - x= 
Pg(1 -W)* 

- 

- 

- 

- 

- 

I I I I I I 

O O  1 s o  2.0 3.0 4-0 5.0 6.1) 
Liquid depth (h) 

FIGURE 1. First critical wave-number, Ic,, as a function of the liquid depth, h, for different 
pressure perturbations. 

2.4. Periodic waves near second harmonic resonance 

This case occurs when the body force is directed from the gas to the liquid only. 
The wave-number k, for second harmonic resonance is the solution of pz = 2p1 

or (4k2-2kx+1)tanh2ki = ( k 2 - k x +  l)tanhk& (2.107) 
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where ,$ is the dimensionless liquid depth with respect to k:. The solution of (2.107) 
is shown in figure 1 as a function of h and x. As ,$ -+ 00, k$ = Q for all x. Ifx = 3/42, 
k$ = 4 for all ,$. For small h, k, = 42. We determine next an expansion for periodic 
waves near k, when ,u: and pi are positive. This condition restricts the values of x 
to those less than 3/42, 

We assume that k = kZ+& (2.108) 

with ,& = O(1). This assumption leaves (2.16)-(2.24) unchanged except for the 
addition of the term - a27 8% 2k k ~ + m k , x -  

ax2 ax 

to the right-hand side of (2.24). The solution of the first-order problem is taken 

71 = cos 0 + b cos 20, (2.109) to be 

cosh 2(y + h) 
sinh 2h ' yl = ,ul sin cash (Y+ ') +,ulb sin 20 

sinh h (2.110) 

= m-1 sin 8 e-mu + m-lb sin 28 e-zmu, (2.1 11) 

8 = X+,ulTO+Pl(!7!1:). (2.112) 

Substituting this solution into (2.21)-(2.23), and the modified (2.24), we get 

- M 2  y x - y + 3  b ~ i n 8 e - ~ ~ ~ + N S P T ,  (2.113) 
m2 ) 

+- a% = [ - +p,(~,+ 2 ~ , )  b +p'] sin 0 

-[,!~~C,-2bp']sin28+NSPT at y = 0, (2.114) 
aT0 aY 

%-?% = A ( m + i )  sin28+$mbsin0+NSPT at y = 0, (2.115) 
ax ay 2 

= [t(3-C2,)p~-&mkzx- 8k,&+2&xb+2,u,C2bp']c~~28 

+ [ ~ ( 3 - 2 C 1 C 2 ) ~ L 2 , b - ~ m k 2 ~ b - 2 1 c , ~ + ~ ~ + , u 1 C 1 P ' ] c o s B  

+NSPT at y = 0, (2.1 1 6) 

where p' = dP/dT,. 
To determine the conditions which must be satisfied for there to be no secular 

terms, we assume that the particular solution corresponding to the secular 
producing terms in (2.113)-(2.116) is 

v2 = 0, (2.117) 

cash (Y + h) + A,  sin 28 cosh 2( y + h) 
sinh 2h- '  

v ) ~  = A ,  sin 0 

M4 

sinh h 

a, = * (y+ 1)2 

(2.1 18) 

+ m-l[D1 sin 8 emu+ D, sin 20 e-2mu]. (2.119) 
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This solution satisfies (2.1) and (2.113). Substituting this solution into (2.113)- 
(2.116), and equating the coefficients of each harmonic on both sides, we get 

2D2-4(y+ 1)E = ( m + i ) ,  
m3 

rs - y + 3) b -pl AICl - k , ~  Dl + +k2X 

= 9(3-2C1C2)p2, - -mk2~-2E2~+k,x+~1P’C, ,  

- 2p1A2C2- 2k2xD2 = $(3-C2,),4-4mk2x- 8k2i+2k2xb+2p1bp‘C2. 

Elimination of A, and D, from (2.120) to (2.125) yields 

The solution of (2.126) and (2.127) for b is 

where CT is the detuning and given by 

0- = (p2-2p1)/& = 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.124) 

(2.125) 

(2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

In dimensional quantities, the surface elevation to first approximation is given 

7’ = a cos k’(x’ + ct’)  + ba cos 2k’(x’+ ct’) + O(a2), (2.132) by 

where the wave speed c is given by 

+O(a2). (2.133) 

This solution shows that for periodic waves, the amplitude of the second harmonic 
is not arbitrary, but it is a function of the amplitude of the first harmonic, the 
deviation from k,, the liquid depth, and the pressure perturbation exerted by the 
gas on the liquid/gas interface. 

In  the absence of an external gas (i.e. x = 0), the above solution reduces to 
that of Barakat & Houston (1968), and to the first-order solution of Nayfeh 
(1970~) .  As h -+ CQ, these solutions reduce, in turn, to those of Pierson & Fife 
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(1961) and Wilton (1915) with cr = 0. These solutions predict double-dimpled 
wave profiles. Schooley (1 960) observed double-dimpled wave profiles by means 
of enlarged pictures of short-fetch, wind-generated waves. 

Subsequent to the submittal of this paper, Nayfeh (1970b) obtained a first- 
order expansion at or near Jc, for the spatial as well as temporal variation of the 
amplitudes and the phases of the fundamental and the second harmonic. The 
results show that the above calculated periodic wave profiles are unstable for 
certain gas flow conditions, and completely stable in the absence of the external 
gas. This last expansion of Nayfeh generalizes those of Simons (1969) and 
McGoldrick (1970) by including the effects of (1) the external gas, (2) near 
resonance, and (3) liquid depth. 

3. Case of viscous liquid and inviscid subsonic or supersonic gas 
In  this case, we investigate the effect of liquid viscosity on the stability of 

an initially quiscent liquid layer adjacent to an inviscid subsonic or supersonic 
gas. To describe the motion of the liquid, we introduce the characteristic velocity 
u, = (gh,)t and time 7 = (k'u,,)-l, where h, is the dimensional depth of the un- 
disturbed liquid layer and k' is a characteristic wave-number of the disturbance. 
If primes denote dimensional quantities, we introduce the following dimension- 

less quantities x = x'P, y = y'/ho, h = h'/h,, 

u = u'/uo, v = v'luoa, a = k'ho, 

t = t 'b,  P = EP,'+g(y'--ho)-P;I/Pu& 
where h' is the depth of the disturbed liquid layer, p is the liquid pressure, and 
u and v are the liquid velocities in the x and y directions, respectively. Here, the x 
and y axes are in and normal to the solid surface rather than in the interface as 
treated above. 

In  terms of these dimensionless quantities, the liquid motion is governed by 

ux + vy = 0, (3.1) 

ut + uuX + vuv = -px + (aR)-' (a2uxZ + uUy), (3.2) 

vt + uvx + vvy = - a-zpar + (aR)-l(aZvxx + vuu), (3.3) 

where R = uoho/v, (3.4) 
with v the liquid kinematic viscosity. Equation (3.1) is satisfied if we introduce 
the stream function @(z, y ,  t )  defhed by 

Eliminating p from (3.2) and (3.3), using ( 3 4 ,  and rearranging, yield 
u =  &, v =  - @ x .  (3.5) 

+uuarar = aR(@arvt + @ a r k J  - $-uuu@x) - 2a2@xxvv 

+ a3R($-xxt + @ar@xxx- @x@xxv) - a4@zxxx. (3.6) 
Equation (3.6) is supplemented by five boundary conditions: two at the solid/ 

liquid interface and three a t  the gas/liquid interface. At the solid/liquid interface, 
both components of velocity vanish; that is, 

+,(., 020 = *&, 0, t) = 0. (3.7) 
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Since the gaslliquid interface moves with the liquid velocity, 
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h,+$vhx+$x = 0, y = h. 

The balance of stresses at  the gas/liquid interface gives 

$gll = a2($zx+h3vy+ 4$xvhx) -.“xxh& Y = h, 

--jj-(@gv-a2$xx)- 2a hX = 0, y = h, (3.10) 
1 + a2h$ 

and C, is the subsonic or supersonic pressure perturbation coefficient exerted by 
the gas on the liquidlgas interface due to the appearance of waves and given 
by (2.8). 

The gas motion is represented by the potential function V,[x + @(x, y”, t ) ] /k ’  
where y” = y’k’ and @ satisfies (2.2) and (2.4) with y replaced by y”. The boundary 
condition (2.6) becomes 

ahx-@,=-ahXcDx a t  y”=a(h-l) .  (3.13) 

In  $3.1 ) an expansion is obtained for long waves and small but finite amplitudes. 
This expansion is then specialized to the case of a sinusoidal initial disturbance 
in $ 3.2. 

3.1. Solution for  long waves 

An approximate solution for (2.2), (2.4)) and (3.1)-(3.13) is sought for small a. 

(3.14) 
Thus, we assume that 

p =po+apl+a2p2+ ..., (3.15) 

@ = a@,+a2@2+a3@,,+.... (3.16) 

Let us discuss the solution for <D first, in order to determine C,, and then de- 
termine $ andp. Substituting (3.16) into (2.2)) (2.4)) and (3.13), we get 

(3.17) 
Order a: 

a1+O as y”+cc for m 2 > 0 ,  (3.18) 

$ = a$1+a2$2fa3$3+ ... ) 

m2@.,,+ @1,, = 0, 

Q1, = h, at y” = 0. 
Order a2: 

(3.19) 
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We will not write down the problem for Q3; it is sufficient to observe that Q3 
is a non-linear function of (h  - 1 )  and its derivatives, and hence, it will not con- 
tribute to the expansion to O[(h- 1)3] = O(a3), which we will obtain later. The 
pressure coefficient is then 

C, = - 2a@,, - a2(2@,, + rn2@?, + a&,) + a3 (non-linear terms). (3.23) 

We now turn to $ and p .  Since (3.3) is linear, it is satisfied by each $i. Sub- 
stituting (3.14) and (3.15) into (3.6)-(3.11) and (3.23), equating coefficients of 
equal powers of a on both sides, and assuming R = O( l ) ,  we obtain the following 
equations. 
Order a: $I,,,, = 0, (3.24) 

(3.25) 

(3.26a) 

(3.26b) 

(3.27) 

(3.28) 

( 3.29 a)  

(3.293) 

(3.30) 

(3.31) 

(3.32a) 

P2x = R-W3,,ll + $ l X X U )  - 92,t - 91, $Is, i- $1,ll $12. (3.32 b )  

The solution of the first-order problem is 

where 

with 

$1 = a2 Y2 f a3 Y3, 

a2 = +Rh[ and a3 = -QR[, 

[ = h, + k2hzxx - m k x  

(3.33) 

(3.34) 

(3.35) 

On using the above solution and solving the second-order problem, we get 

$ - - _  - $(p1xh+a2th2+a3th3) y2+ & R ~ , , y ~ + R ( + ~ ~ y * + & , a ~ ~ y ~ ) .  (3.36) 

Then, the solution of the third-order problem is 

$3 = b2 Y + b3 Y3 - ?&,x + B 1R2" Ctt) Y4 + i@cxx Y5 + d-aR3CttY6 

- & $ P f t t y 7  +non-linear terms, (3.37) 

where b, = $R[xx-&R3[tt and b, = -+zR[xx. (3.38) 
15 F L M  46 
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So far, no restriction has been imposed on the magnitude of the disturbance. 
In  order to get an approximate solution to the liquid motion, the disturbance 
amplitude is assumed to be small but finite. Thus, we assume that 

h = 1 +eq(x, t ) ,  (3.39) 

where F is a small but finite dimensionless constant. Substituting the above 
expressions for $,,, $1, $2, and h into (3.8), assuming that 8 = O(a), and keeping 
up to third-order quantities, we obtain the following equation: 

T t  + W C X  - &a2R2Cxt + ta3RCxxx + eaWTCx + C T X )  + F2aRT(TCx + 2CTx) 

a 
ax 

+ &%-1R mkx - [202, + m20& + 03 + 0(eman) = 0,  (3.40) 

(3.41) where m + n = 4 and t; = qx + k2qxxx - mkX 6-l Olxe. 

3.2. Linear case 
In  this case, we let B = 0 in (3.31) and obtain 

%+%a RC x - +a2R2Cxt 1 -I- &t3RCxxx + O(a4)  = 0. (3.42) 

We assume that 7 = exp (ix+plt)  (3.43) 

and substitute into (3.42), (3.17)-(3.19), and (3.41) to determine Q1 andpl. 
When the gas flow is subsonic, that is, m2 > 0,  the solution for Ql is given as 

Ol = - i(s/m) e-mB7, 
while C, and 6 are given as 

(3.44) 

C, = - 2a(s/m) 7, 5 = - i(k2 - xk - 1) 7, (3.45) 

indicating that the pressure perturbation is in antiphase with wave amplitude. 
In this case with the body force directed from the liquid to the gas, we obtain 

p1 = - ~ a ~ ( k z - ~ k -  i ) { i - ~ a 2 [ 1 - - ~ 2 ( k 2 - ~ k -  1)1}+0(a4). ( 3 . 4 ~ ~ )  

If the body force is directed from the gas to the liquid, ( 3 . 4 6 ~ )  is modified to 

( 3.46 b )  
read 

Equations (3.46) show that viscosity did not alter the cut-off wave-numbers 
given by (2.36). As in the inviscid case, the cut-off wave-number is independent 
of the liquid depth; hawever, decreasing the liquid depth decreases the amplifica- 
tion rate. The Kelvin-Helmholtz criterion for complete stabilization in (3.46 b ) ,  
i.e. x < 2 ,  still holds in the very viscous case, since the second term inside the 
braces is always much less than one. 

When the gas flow is supersonic, that is, M > 1, the solution for Ol is given as 

p l  = - &tR( k2 - x k  + 1) (1 - :a2[ 1 - z7R2( k2 - ~k + 1 )]} + O( a4). 

Ql = - (e/m) e--imPv, (3.47) 

c, = 2a(e/m)qx, 5 = - i ( k 2 + i x k -  l ) T ,  (3.48) 

where only the right-running characteristics have meaning and the pressure 
perturbation is in phase with the wave slope. In  this case, we find 

p1 = - g a ~ ( l c z + i ~ k -  i ) ( i - - a 2 [ 1 - - ~ 2 ( 1 ~ 2 + i X l ~ -  1 )1)+0(~4) .  (3.49) 
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The real and imaginary parts of (3.49) for the case of the body force directed from 
the liquid t o  the gas are 

plr = & ~ R ( k ~ - l ) ( l  -$a2[1 -&R2(k2- l ) ] } + & ~ ~ B ~ ~ ~ k ~ f O ( a ~ ) ,  

pli  = -QaR~k{l -Qa2[1 -&R2(k2- l ) ] } - & c ~ ~ R ~ ~ k ( k ~ -  1)+O(a4).  

(3.50a) 

(3.506) 

The cut-off wave-number from (3.41a) is given by 

IC, = 1 + + 2 ~ 2 X 2  + 0 ( ~ 3 ) .  (3.51) 

In  the inviscid case (Chang & Russell 1965), no cut-off wave-number exists with 
the supersonic flow, regardless of the direction of the body force. An increase in 
viscosity or Mach number decreases the cut-off wave-number, which is stabilizing. 

For the case of the body force directed from the gas to the liquid, the growth 
rate and oscillation frequency are 

p ly  = - &R( k2 + 1) { 1 - +a2[ 1 - .&B2(k2 + l)]} + &a3R3x2k2 + O(a4) ,  (3.52 a) 

p,,. = - + a ~ X k { i  -gay1 -;T~2(k2+ 1 ) 1 } - + 3 ~ 3 X k ( ~ +  1)+0(a4), (3.52b) 

and plr < 0 for all k, indicating complete stabilization with large viscosity. 

3.3. Non-linear case with subsonic external $ow 

By letting q = ql(t) eix + r l ( t )  e-i" + e[q2( t )  e2iz + ij2(t) e-2iz] + O(e2) (3.53) 

in (3.40) and (3.41)) using (3.17)-(3.22), and noting that the solution for a2 
produces a higher harmonic such that neither Q1 nor Q2 will contribute to the 
last term in (3.40) for the solution of ql, so that (3.45) is still valid, we find that 

(3.54) dql/dt - p l  ql = - e2aR[( 7k2 - 3 ~ k  - 1) ijl r2 + ( k2 - ~k - 1)  q 5 1 ]  + O ( q ,  

dq2/dt + $aR(4k2 - 2 ~ k  - 1) q2 = - 2aR(k2 - xk - 1) 7: + O(S), (3.55) 

where pl is given by (3.46) and the body force is directed from the liquid to the 
gas. To this order, the non-linear motion of the gas does not affect the motion of 
the liquid. As a first approximation, 

q1 = e-+aR(k2-,yk-l) t (3.56) 

where c is a constant. Then, from (3.55), 

k2-Xk-1 
q2 = - 3  7:. 7k2 - 3xk - 1 

(3.57) 

Substituting for q2 from (3.57) into (3.54) gives 

dql/dt = -~~R(k2-~k-l){1-$~2[1-&rR2(k2-~k-1)]-6~2~~}~l. (3.58) 

Equation (3.58) shows that the non-linearity did not alter the cut-off wave- 
number, and it is still given by (2.36), whereas it is amplitude dependent in the 
inviscid case. However, the rate of growth of unstable modes and the rate of 
decay of stable modes decrease as amplitude increases. If x = 0, the problem 
reduces to the non-linear Rayleigh-Taylor instability with large viscosity. If  the 
body force is directed from the gas to the liquid, the term (k2  - ~k - 1) is replaced 
by (k2 - xk + 1). 

I 5-2 
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3.4. Non-linear case with supersonic external flow 
Substituting (3.53) into (3.40) and (3.41) and noting that Q2 does not contribute 
to yl so that (3.48) is stil1 valid, we get 

dyl /d t  - plyl = - e2aR[( 7k2 + 5 i ~ k  - 1) ?jl y + ( k2 + 3 i ~ k  - 1) y21?j1] + O(e4), (3.59) 

d72/dt+$aR(4k2+ 2 i ~ k -  I)?, = - 2 ~ B ( k ~ + i ~ k -  l )q?+ O(e2), (3.60) 

where p1 is given by (3.49) and the body force is directed from the liquid to the 
gas. As a first approximation, 

1 -  - e-*aR(k2+iXk-l)ta (3.61) 

Then, from (3.601, (3.62) 

Substituting for qZ from (3.62) into (3.59) gives 

Letting yl = a(t)  eiO(t), where a and 8 are real in (3.63) .and separating real and 
imaginary parts, we get 

da 
- = -+aR((k2- 1) [l -:a2+&a2R2(k2- l)] -&a2R2x2k2)a 
at 

From (3.64), the cut-off wave-number is approximately given by 

kc = 1 + &a2R2x2 - 48 ~ X 2  $a2 + O(amen), n + m = 3. 
x 2 +  4 

(3.65) 

Thus, in this case also, the non-linearity is stabilizing. However, the cut-off 
wave-number is amplitude dependent in the supersonic case, while it is amplitude 
independent in the subsonic case. When the body force is directed from the gas 
to the liquid, the non-linearity does not change the linear result of complete 
stabilization. For wave-numbers near the cut-off wave-number for p1 > 0, say, 
k- 1 = O(amen) for m + n  = 2, disturbances do not grow indefinitely with time. 
In  fact, a t  a given wave-number, a steady-state amplitude can be calculated from 
( 3.65). 

4. Concluding remarks 
The results of $ 2  show that, for an inviscid liquid and a subsonic flow, the 

cut-off wave-numbers are amplitude dependent, contrary to the linearized theory 
of Chang & Russell (1965) and Willson & Chang (1967). The cut-off wave-numbers 
are given by (2.102). The non-linear motion of the gas may increase or decrease 
the cut-off wave-number while the non-linear motion of the liquid does not affect 
this cut-off wave-number. Thus, the non-linear motion of the gas may be 
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stabilizing or destabilizing. If the body force (9)  is directed from the liquid to 
the gas, only one cut-off wave-number exists. Above this cut-off wave-number, 
standing as well as travelling waves are stable and have amplitude-dependent 
frequencies and wave velocities, respectively. If g is directed toward the liquid, 
then, depending on the ratio of the pressure perturbation to g, there are either two 
or no cut-off wave-numbers. In  the former case, only disturbances with wave- 
numbers between the two cut-off wave-numbers are unstable. In  the latter case, 
all disturbances are stable. 

In  the case with no cut-off wave-numbers, the expansions break down at a 
denumerable set of critical wave-numbers as in the case of negligible external 
gas effects (Pierson & Fife 1961; Barakat & Houston 1968; Nayfeh 1970a).  An 
expansion, valid near the first critical wave-number (corresponding to a wave- 
length of 2.44 em in deep water), is presented for periodic waves. It shows that 
two possible wave profiles could exist at or near this critical wave-number. One 
is gravity-like, with a wave velocity increasing with increasing amplitude; the 
second is capillary-like with a w&ve velocity decreasing with increasing amplitude. 
The analysis of Nayfeh ( 1  970 b) shows that these wave profiles may be unstable 
depending on the gas flow conditions. 

It should be noted that travelling waves resemble standing waves near the 
cut-off wave-numbers. Moreover, the non-linear travelling waves (2.16) cannot 
be obtained by the superposition of the non-linear standing waves (2.27) as in 
the linear case. 

For liquid Reynolds number = O(1) and for a subsonic external flow, the 
linear cut-off wave-number is independent of viscosity. The non-linear cut-off 
wave-number is independent of the amplitude, in contrast with the inviscid 
liquid case. Moreover, the non-linear motion of the gas has no effect, whereas 
the non-linear motion of the liquid is stabilizing in the viscous case, and it is 
destabilizing in the inviscid case. 

If the external gas is supersonic, then the cut-off wave-number is amplitude 
dependent. However, the cut-off wave-number decreases with increasing ampli- 
tude and the growth rate of unstable disturbances decreases with increasing 
amplitude. In  fact, disturbances with wave-numbers near the cut-off wave- 
number do not grow indefinitely with time, but achieve steady-state amplitude. 

This work was supported by the United States Atomic Energy Commission. 

Appendix 

q = - - - (  + l)?*-y+3). m2 
8m2 ” 

3m4+ 2m2- 1 1. (A21 ++(y-l)-  - + 3  -_____ 
M 2 ( 1  m m2 ) 4m3 
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(A 4) 
azz-$-$(y+1)--&m2. M4 

m2 

r4 2 0 ) r $ - y + 3  - - - (  3 M6 + 1 ) ( 2 y - 3 )  ) 32 m3 
p - - M 2  L 2 + d  

(A 8) 
6 + 9m4 -&(?--I)- 3 + - 3  + M 2 -  

M4( m i) 16m3 

3 M4 3 M 2  
Ps=m -- -+a,, +--( + l ) - S m - - - -  [ :(? ) 6 4 ~ ~ ~ ~  3 2  32 m 
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